Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38381653

RESUMO

A promising strategy to overcome limitations in biological control of insect pests is the combined application of entomopathogenic pseudomonads (EPPs) and nematodes (EPNs) associated with mutualistic bacteria (NABs). Yet, little is known about interspecies interactions such as competition, coexistence, or even cooperation between these entomopathogens when they infect the same insect host. We investigated the dynamics of bacteria-bacteria interactions between the EPP Pseudomonas protegens CHA0 and the NAB Xenorhabdus bovienii SM5 isolated from the EPN Steinernema feltiae RS5. Bacterial populations were assessed over time in experimental systems of increasing complexity. In vitro, SM5 was outcompeted when CHA0 reached a certain cell density, resulting in the collapse of the SM5 population. In contrast, both bacteria were able to coexist upon haemolymph-injection into Galleria mellonella larvae, as found for three further EPP-NAB combinations. Finally, both bacteria were administered by natural infection routes i.e. orally for CHA0 and nematode-vectored for SM5 resulting in the addition of RS5 to the system. This did not alter bacterial coexistence nor did the presence of the EPP affect nematode reproductive success or progeny virulence. CHA0 benefited from RS5, probably by exploiting access routes formed by the nematodes penetrating the larval gut epithelium. Our results indicate that EPPs are able to share an insect host with EPNs and their mutualistic bacteria without major negative effects on the reproduction of any of the three entomopathogens or the fitness of the nematodes. This suggests that their combination is a promising strategy for biological insect pest control.


Assuntos
Mariposas , Rabditídios , Animais , Insetos , Mariposas/microbiologia , Larva/microbiologia , Simbiose , Rabditídios/microbiologia
2.
Microbiol Mol Biol Rev ; 87(4): e0006323, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37947420

RESUMO

SUMMARYCommunities of microorganisms (microbiota) are present in all habitats on Earth and are relevant for agriculture, health, and climate. Deciphering the mechanisms that determine microbiota dynamics and functioning within the context of their respective environments or hosts (the microbiomes) is crucially important. However, the sheer taxonomic, metabolic, functional, and spatial complexity of most microbiomes poses substantial challenges to advancing our knowledge of these mechanisms. While nucleic acid sequencing technologies can chart microbiota composition with high precision, we mostly lack information about the functional roles and interactions of each strain present in a given microbiome. This limits our ability to predict microbiome function in natural habitats and, in the case of dysfunction or dysbiosis, to redirect microbiomes onto stable paths. Here, we will discuss a systematic approach (dubbed the N+1/N-1 concept) to enable step-by-step dissection of microbiome assembly and functioning, as well as intervention procedures to introduce or eliminate one particular microbial strain at a time. The N+1/N-1 concept is informed by natural invasion events and selects culturable, genetically accessible microbes with well-annotated genomes to chart their proliferation or decline within defined synthetic and/or complex natural microbiota. This approach enables harnessing classical microbiological and diversity approaches, as well as omics tools and mathematical modeling to decipher the mechanisms underlying N+1/N-1 microbiota outcomes. Application of this concept further provides stepping stones and benchmarks for microbiome structure and function analyses and more complex microbiome intervention strategies.


Assuntos
Microbiota , Humanos , Microbiota/genética , Disbiose
3.
Front Microbiol ; 14: 1264877, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886057

RESUMO

Contractile injection systems (CISs) are phage tail-related structures that are encoded in many bacterial genomes. These devices encompass the cell-based type VI secretion systems (T6SSs) as well as extracellular CISs (eCISs). The eCISs comprise the R-tailocins produced by various bacterial species as well as related phage tail-like structures such as the antifeeding prophages (Afps) of Serratia entomophila, the Photorhabdus virulence cassettes (PVCs), and the metamorphosis-associated contractile structures (MACs) of Pseudoalteromonas luteoviolacea. These contractile structures are released into the extracellular environment upon suicidal lysis of the producer cell and play important roles in bacterial ecology and evolution. In this review, we specifically portray the eCISs with a focus on the R-tailocins, sketch the history of their discovery and provide insights into their evolution within the bacterial host, their structures and how they are assembled and released. We then highlight ecological and evolutionary roles of eCISs and conceptualize how they can influence and shape bacterial communities. Finally, we point to their potential for biotechnological applications in medicine and agriculture.

4.
Microbiol Spectr ; 11(6): e0204923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37800913

RESUMO

IMPORTANCE: The application of plant-beneficial microorganisms to protect crop plants is a promising alternative to the usage of chemicals. However, biocontrol research often faces difficulties in implementing this approach due to the inconsistency of the bacterial inoculant to establish itself within the root microbiome. Beneficial bacterial inoculants can be decimated by the presence of their natural predators, notably bacteriophages (also called phages). Thus, it is important to gain knowledge regarding the mechanisms behind phage-bacteria interactions to overcome this challenge. Here, we evidence that the major long O-antigenic polysaccharide (O-PS, O-antigen) of the widely used model plant-beneficial bacterium Pseudomonas protegens CHA0 is the receptor of its natural predator, the phage ΦGP100. We examined the distribution of the gene cluster directing the synthesis of this O-PS and identified signatures of horizontal gene acquisitions. Altogether, our study highlights the importance of bacterial cell surface structure variation in the complex interplay between phages and their Pseudomonas hosts.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Antígenos O/genética , Evolução Biológica , Bactérias
5.
Microbiome ; 11(1): 214, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37770950

RESUMO

BACKGROUND: Plant-beneficial bacterial inoculants are of great interest in agriculture as they have the potential to promote plant growth and health. However, the inoculation of the rhizosphere microbiome often results in a suboptimal or transient colonization, which is due to a variety of factors that influence the fate of the inoculant. To better understand the fate of plant-beneficial inoculants in complex rhizosphere microbiomes, composed by hundreds of genotypes and multifactorial selection mechanisms, controlled studies with high-complexity soil microbiomes are needed. RESULTS: We analysed early compositional changes in a taxa-rich natural soil bacterial community under both exponential nutrient-rich and stationary nutrient-limited growth conditions (i.e. growing and stable communities, respectively) following inoculation with the plant-beneficial bacterium Pseudomonas protegens in a bulk soil or a wheat rhizosphere environment. P. protegens successfully established under all conditions tested and was more abundant in the rhizosphere of the stable community. Nutrient availability was a major factor driving microbiome composition and structure as well as the underlying assembly processes. While access to nutrients resulted in communities assembled mainly by homogeneous selection, stochastic processes dominated under the nutrient-deprived conditions. We also observed an increased rhizosphere selection effect under nutrient-limited conditions, resulting in a higher number of amplicon sequence variants (ASVs) whose relative abundance was enriched. The inoculation with P. protegens produced discrete changes, some of which involved other Pseudomonas. Direct competition between Pseudomonas strains partially failed to replicate the observed differences in the microbiome and pointed to a more complex interaction network. CONCLUSIONS: The results of this study show that nutrient availability is a major driving force of microbiome composition, structure and diversity in both the bulk soil and the wheat rhizosphere and determines the assembly processes that govern early microbiome development. The successful establishment of the inoculant was facilitated by the wheat rhizosphere and produced discrete changes among other members of the microbiome. Direct competition between Pseudomonas strains only partially explained the microbiome changes, indicating that indirect interactions or spatial distribution in the rhizosphere or soil interface may be crucial for the survival of certain bacteria. Video Abstract.


Assuntos
Solo , Triticum , Solo/química , Triticum/microbiologia , Rizosfera , Microbiologia do Solo , Raízes de Plantas/microbiologia , Bactérias/genética , Plantas , Pseudomonas/genética
6.
mBio ; 14(5): e0085723, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37650608

RESUMO

IMPORTANCE: Bacteria communicate by exchanging chemical signals, some of which are volatile and can remotely reach other organisms. HCN was one of the first volatiles discovered to severely impact exposed organisms by inhibiting their respiration. Using HCN-deficient mutants in two Pseudomonas strains, we demonstrate that HCN's impact goes beyond the sole inhibition of respiration and affects both emitting and receiving bacteria in a global way, modulating their motility, biofilm formation, and production of antimicrobial compounds. Our data suggest that bacteria could use HCN not only to control their own cellular functions, but also to remotely influence the behavior of other bacteria sharing the same environment. Since HCN emission occurs in both clinically and environmentally relevant Pseudomonas, these findings are important to better understand or even modulate the expression of bacterial traits involved in both virulence of opportunistic pathogens and in biocontrol efficacy of plant-beneficial strains.


Assuntos
Cianeto de Hidrogênio , Pseudomonas , Pseudomonas/genética , Pseudomonas/metabolismo , Cianeto de Hidrogênio/metabolismo , Cianeto de Hidrogênio/farmacologia , Plantas/microbiologia
7.
Curr Biol ; 33(15): 3097-3110.e6, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419116

RESUMO

The Pseudomonas genus has shown great potential as a sustainable solution to support agriculture through its plant-growth-promoting and biocontrol activities. However, their efficacy as bioinoculants is limited by unpredictable colonization in natural conditions. Our study identifies the iol locus, a gene cluster in Pseudomonas involved in inositol catabolism, as a feature enriched among superior root colonizers in natural soil. Further characterization revealed that the iol locus increases competitiveness, potentially caused by an observed induction of swimming motility and the production of fluorescent siderophore in response to inositol, a plant-derived compound. Public data analyses indicate that the iol locus is broadly conserved in the Pseudomonas genus and linked to diverse host-microbe interactions. Together, our findings suggest the iol locus as a potential target for developing more effective bioinoculants for sustainable agriculture.


Assuntos
Pseudomonas , Rizosfera , Pseudomonas/genética , Agricultura , Microbiologia do Solo , Desenvolvimento Vegetal , Raízes de Plantas/genética
8.
ISME J ; 17(9): 1369-1381, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37311938

RESUMO

Strains belonging to the Pseudomonas protegens phylogenomic subgroup have long been known for their beneficial association with plant roots, notably antagonising soilborne phytopathogens. Interestingly, they can also infect and kill pest insects, emphasising their interest as biocontrol agents. In the present study, we used all available Pseudomonas genomes to reassess the phylogeny of this subgroup. Clustering analysis revealed the presence of 12 distinct species, many of which were previously unknown. The differences between these species also extend to the phenotypic level. Most of the species were able to antagonise two soilborne phytopathogens, Fusarium graminearum and Pythium ultimum, and to kill the plant pest insect Pieris brassicae in feeding and systemic infection assays. However, four strains failed to do so, likely as a consequence of adaptation to particular niches. The absence of the insecticidal Fit toxin explained the non-pathogenic behaviour of the four strains towards Pieris brassicae. Further analyses of the Fit toxin genomic island evidence that the loss of this toxin is related to non-insecticidal niche specialisation. This work expands the knowledge on the growing Pseudomonas protegens subgroup and suggests that loss of phytopathogen inhibition and pest insect killing abilities in some of these bacteria may be linked to species diversification processes involving adaptation to particular niches. Our work sheds light on the important ecological consequences of gain and loss dynamics for functions involved in pathogenic host interactions of environmental bacteria.


Assuntos
Insetos , Pseudomonas , Animais , Insetos/microbiologia , Filogenia , Plantas/microbiologia
9.
Environ Microbiol ; 24(8): 3273-3289, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35315557

RESUMO

Root-colonizing bacteria have been intensively investigated for their intimate relationship with plants and their manifold plant-beneficial activities. They can inhibit growth and activity of pathogens or induce defence responses. In recent years, evidence has emerged that several plant-beneficial rhizosphere bacteria do not only associate with plants but also with insects. Their relationships with insects range from pathogenic to mutualistic and some rhizobacteria can use insects as vectors for dispersal to new host plants. Thus, the interactions of these bacteria with their environment are even more complex than previously thought and can extend far beyond the rhizosphere. The discovery of this secret life of rhizobacteria represents an exciting new field of research that should link the fields of plant-microbe and insect-microbe interactions. In this review, we provide examples of plant-beneficial rhizosphere bacteria that use insects as alternative hosts, and of potentially rhizosphere-competent insect symbionts. We discuss the bacterial traits that may enable a host-switch between plants and insects and further set the multi-host lifestyle of rhizobacteria into an evolutionary and ecological context. Finally, we identify important open research questions and discuss perspectives on the use of these rhizobacteria in agriculture.


Assuntos
Insetos , Rizosfera , Animais , Bactérias/genética , Insetos/microbiologia , Raízes de Plantas/microbiologia , Plantas/microbiologia , Microbiologia do Solo , Simbiose
10.
ISME J ; 16(7): 1683-1693, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35273372

RESUMO

Environmental pseudomonads colonize various niches including insect and plant environments. When invading these environments, bacteria are confronted with the resident microbiota. To oppose with closely related strains, they rely on narrow-spectrum weaponry such as tailocins, i.e., phage tail-like particles. Little is known about the receptors for these tailocins especially among phylogenetically closely related species. Here, we studied the interaction between an R-tailocin from Pseudomonas protegens CHA0 and a targeted kin, Pseudomonas protegens Pf-5. Using genome-wide transposon insertion sequencing, we identified that lipopolysaccharides are involved in the sensitivity of Pf-5 towards the tailocin of CHA0. By generating Pf-5 lipopolysaccharide mutants and exposing them to extracted tailocin, we specified the two O-antigenic polysaccharides (O-PS) targeted by the tailocin. We affirmed the role of these O-PS through competition assays in vitro as well as in insects. Further, we demonstrate that O-PS are double-edge swords that are responsible for the sensitivity of P. protegens towards tailocins and phages produced by their kin, but shield bacteria from the immune system of the insect. Our results shed light on the trade-off that bacteria are confronted with, where specific O-PS decorations can both be of benefit or disadvantage depending on the host environment and its bacterial inhabitants.


Assuntos
Bacteriófagos , Antígenos O , Bacteriófagos/genética , Plantas/microbiologia , Pseudomonas/genética
11.
Iran J Biotechnol ; 19(2): e2762, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34435061

RESUMO

BACKGROUND: Septoria tritici blotch (STB) caused by fungus Zymoseptoria tritici, is one of the important wheat (Triticum aestivum L.) diseases difficult to control because of the lack of wheat resistant cultivars. The use of biological control agents is one possible way for triggering host plant resistance to biotic and abiotic stresses. OBJECTIVE: In this study, we examined the ability of Serendipita indica and Pseudomonas protegens CHA0-mCherry in inducing the local wheat cultivar Tajan resistance to STB. MATERIALS AND METHODS: The interaction between biological control agents and the roots of wheat was evaluated. The experiment was conducted in a completely randomized design by three replicates. Spore suspension was supplied at concentrations of 107 and 109 for S. indica and bacteria isolate (CHA0-mCherry) respectively. Five treatments were applied including S. indica, CHA0-mCherry, S. indica and CHA0-mCherry co-inoculation, positive and negative control. Twenty-one days after inoculation, the interaction between biological agents and plant roots were evaluated through morphological traits and qPCR. The plant resistance, disease severity, and the correlation between resistance and disease severity were assessed. Pycnidial variation and agronomic traits were also evaluated. RESULTS: Twenty-one days after inoculation, both biological agents clearly colonized all treated roots of all treatments except in control plants as demonstrated by qPCR analysis. Chlamydospores were observed in the S. indica-treated hosts with the CHA0-mCherry colonizing assessment showing 5×109 CFU g-1 in the root. The asexual phase of the fungal pathogen, pycnidial diameter, was reduced in S. indica treated plants more considerably than in the other treatments. There was a positive correlation between resistance and disease severity mean when calculated by Pearson's correlation. There was a significant difference between the root length, fresh, and dry weight of root. Spore density was inversely correlated to resistance and disease severity, when compared with control, with CHA0-mCherry being the most effective in reducing the spore density. S. indica was the most effective in promoting root growth and stem biomass, when compared with control. CONCLUSIONS: Serendipita indica and Pseudomonas protegens CHA0-mCherry colonies showed a potential biological control activity and efficiently enhanced the plant resistance to Z. tritici in the treated wheat roots. The microbial biological control agents are very practical in crop protection against plant disease and can be very useful in sustainable agriculture. ABBREVIATIONS: PLSN: percentage of leave surface necrosis, DPI: day past inoculation, PLACL: percentage of leaf area covered by lesions, PPMLA: pycnidia per millimeter in leaf area.

12.
Environ Microbiol ; 23(9): 5378-5394, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34190383

RESUMO

Strains belonging to the Pseudomonas protegens and Pseudomonas chlororaphis species are able to control soilborne plant pathogens and to kill pest insects by producing virulence factors such as toxins, chitinases, antimicrobials or two-partner secretion systems. Most insecticidal Pseudomonas described so far were isolated from roots or soil. It is unknown whether these bacteria naturally occur in arthropods and how they interact with them. Therefore, we isolated P. protegens and P. chlororaphis from various healthy insects and myriapods, roots and soil collected in an agricultural field and a neighbouring grassland. The isolates were compared for insect killing, pathogen suppression and host colonization abilities. Our results indicate that neither the origin of isolation nor the phylogenetic position mirror the degree of insecticidal activity. Pseudomonas protegens strains appeared homogeneous regarding phylogeny, biocontrol and insecticidal capabilities, whereas P. chlororaphis strains were phylogenetically and phenotypically more heterogenous. A phenotypic and genomic analysis of five closely related P. chlororaphis isolates displaying varying levels of insecticidal activity revealed variations in genes encoding insecticidal factors that may account for the reduced insecticidal activity of certain isolates. Our findings point towards an adaption to insects within closely related pseudomonads and contribute to understand the ecology of insecticidal Pseudomonas.


Assuntos
Artrópodes , Inseticidas , Animais , Variação Genética , Insetos , Inseticidas/farmacologia , Filogenia
13.
Commun Biol ; 4(1): 87, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469108

RESUMO

Interference competition among bacteria requires a highly specialized, narrow-spectrum weaponry when targeting closely-related competitors while sparing individuals from the same clonal population. Here we investigated mechanisms by which environmentally important Pseudomonas bacteria with plant-beneficial activity perform kin interference competition. We show that killing between phylogenetically closely-related strains involves contractile phage tail-like devices called R-tailocins that puncture target cell membranes. Using live-cell imaging, we evidence that R-tailocins are produced at the cell center, transported to the cell poles and ejected by explosive cell lysis. This enables their dispersal over several tens of micrometers to reach targeted cells. We visualize R-tailocin-mediated competition dynamics between closely-related Pseudomonas strains at the single-cell level, both in non-induced condition and upon artificial induction. We document the fatal impact of cellular self-sacrifice coupled to deployment of phage tail-like weaponry in the microenvironment of kin bacterial competitors, emphasizing the necessity for microscale assessment of microbial competitions.


Assuntos
Bacteriocinas/metabolismo , Interações Microbianas/fisiologia , Pseudomonas/metabolismo , Antibacterianos/farmacologia , Bacteriófagos/metabolismo , Pseudomonas/genética , Vírion/metabolismo
14.
Curr Biol ; 31(5): 1012-1028.e7, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33508217

RESUMO

Plants restrict immune responses to vulnerable root parts. Spatially restricted responses are thought to be necessary to avoid constitutive responses to rhizosphere microbiota. To directly demonstrate the importance of spatially restricted responses, we expressed the plant flagellin receptor (FLS2) in different tissues, combined with fluorescent defense markers for immune readouts at cellular resolution. Our analysis distinguishes responses appearing cell autonomous from apparently non-cell-autonomous responses. It reveals lignification as a general immune response, contrasting suberization. Importantly, our analysis divides the root meristem into a central zone refractory to FLS2 expression and a cortex that is sensitized by FLS2 expression, causing meristem collapse upon stimulation. Meristematic epidermal expression generates super-competent lines that detect native bacterial flagellin and bypass the weak or absent response to commensals, providing a powerful tool for studying root immunity. Our manipulations and readouts demonstrate incompatibility of meristematic activity and defense and the importance of cell-resolved studies of plant immune responses.


Assuntos
Bactérias/imunologia , Meristema/imunologia , Meristema/microbiologia , Imunidade Vegetal , Plantas/imunologia , Plantas/microbiologia , Proteínas de Arabidopsis , Proteínas Quinases
15.
ISME J ; 14(11): 2766-2782, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32879461

RESUMO

Pseudomonas protegens shows a high degree of lifestyle plasticity since it can establish both plant-beneficial and insect-pathogenic interactions. While P. protegens protects plants against soilborne pathogens, it can also invade insects when orally ingested leading to the death of susceptible pest insects. The mechanism whereby pseudomonads effectively switch between lifestyles, plant-beneficial or insecticidal, and the specific factors enabling plant or insect colonization are poorly understood. We generated a large-scale transcriptomics dataset of the model P. protegens strain CHA0 which includes data from the colonization of wheat roots, the gut of Plutella xylostella after oral uptake and the Galleria mellonella hemolymph after injection. We identified extensive plasticity in transcriptomic profiles depending on the environment and specific factors associated to different hosts or different stages of insect infection. Specifically, motor-activity and Reb toxin-related genes were highly expressed on wheat roots but showed low expression within insects, while certain antimicrobial compounds (pyoluteorin), exoenzymes (a chitinase and a polyphosphate kinase), and a transposase exhibited insect-specific expression. We further identified two-partner secretion systems as novel factors contributing to pest insect invasion. Finally, we use genus-wide comparative genomics to retrace the evolutionary origins of cross-kingdom colonization.


Assuntos
Pseudomonas , Transcriptoma , Animais , Insetos , Raízes de Plantas , Pseudomonas/genética
16.
Microbiol Resour Announc ; 9(8)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32079630

RESUMO

We report the draft genome sequence of Pseudomonas sp. strain LD120, which was isolated from a brown macroalga in the Baltic Sea. The genome of this marine Pseudomonas protegens subgroup bacterium harbors biosynthetic gene clusters for toxic metabolites typically produced by members of this Pseudomonas subgroup, including 2,4-diacetylphloroglucinol, pyoluteorin, and rhizoxin analogs.

17.
Microbiol Resour Announc ; 8(39)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558637

RESUMO

Minor differences in the previously obtained genome of Pseudomonas protegens CHA0 were detected after resequencing the strain. Based on this, the genome size slightly increased. Additionally, we performed a manual annotation of genes involved in biocontrol and insect pathogenicity. This annotation version will be the basis for upcoming genome studies.

18.
Sci Rep ; 9(1): 3127, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816250

RESUMO

Diabrotica virgifera virgifera LeConte, the western corn rootworm (WCR), is the most destructive pest of maize in North America, and has recently spread across central Europe. Its subterranean larval stages are hard to reach with pesticides and it has evolved resistance to conventional management practices. The application of beneficial soil organisms is being considered as a sustainable and environmental friendly alternative. In a previous study, the combined application in wheat fields of arbuscular mycorrhizal fungi, entomopathogenic Pseudomonas bacteria, and entomopathogenic nematodes was found to promote growth and protection against a natural pest infestation, without negative cross effects. Because of the insect-killing capacity of the bacteria and nematodes, we hypothesized that the application of these organisms would have similar or even greater beneficial effects in WCR-infested maize fields. During three consecutive years (2015-2017), we conducted trials in Missouri (USA) in which we applied the three organisms, alone or in combinations, in plots that were artificially infested with WCR and in non-infested control plots. For two of the three trials, we found that in plots treated with entomopathogenic nematodes and/or entomopathogenic Pseudomonas bacteria, roots were less damaged than the roots of plants in control plots. During one year, WCR survival was significantly lower in plots treated with Pseudomonas than in control plots, and the surviving larvae that were recovered from these plots were lighter. The bacterial and nematodes treatments also enhanced yield, assessed as total grain weight, in one of the trials. The effects of the treatments varied considerable among the three years, but they were always positive for the plants.


Assuntos
Besouros/fisiologia , Controle Biológico de Vetores , Doenças das Plantas/parasitologia , Zea mays/parasitologia , Animais , Besouros/microbiologia , Besouros/parasitologia , Micorrizas/fisiologia , Nematoides/fisiologia , Controle Biológico de Vetores/métodos , Pseudomonas/fisiologia , Zea mays/fisiologia
19.
ISME J ; 13(5): 1318-1329, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30683920

RESUMO

Pseudomonas protegens are multi-talented plant-colonizing bacteria that suppress plant pathogens and stimulate plant defenses. In addition, they are capable of invading and killing agriculturally important plant pest insects that makes them promising candidates for biocontrol applications. Here we assessed the role of type VI secretion system (T6SS) components of type strain CHA0 during interaction with larvae of the cabbage pest Pieris brassicae. We show that the T6SS core apparatus and two VgrG modules, encompassing the respective T6SS spikes (VgrG1a and VgrG1b) and associated effectors (RhsA and Ghh1), contribute significantly to insect pathogenicity of P. protegens in oral infection assays but not when bacteria are injected directly into the hemolymph. Monitoring of the colonization levels of P. protegens in the gut, hemolymph, and excrements of the insect larvae revealed that the invader relies on T6SS and VgrG1a module function to promote hemocoel invasion. A 16S metagenomic analysis demonstrated that T6SS-supported invasion by P. protegens induces significant changes in the insect gut microbiome affecting notably Enterobacteriaceae, a dominant group of the commensal gut bacteria. Our study supports the concept that pathogens deploy T6SS-based strategies to disrupt the commensal microbiota in order to promote host colonization and pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Microbioma Gastrointestinal , Insetos/microbiologia , Pseudomonas/fisiologia , Sistemas de Secreção Tipo VI/metabolismo , Animais , Proteínas de Bactérias/genética , Comportamento Alimentar , Insetos/fisiologia , Larva/microbiologia , Larva/fisiologia , Pseudomonas/genética , Simbiose , Sistemas de Secreção Tipo VI/genética
20.
ISME J ; 13(4): 860-872, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30504899

RESUMO

The discovery of insecticidal activity in root-colonizing pseudomonads, best-known for their plant-beneficial effects, raised fundamental questions about the ecological relevance of insects as alternative hosts for these bacteria. Since soil bacteria are limited in their inherent abilities of dispersal, insects as vectors might be welcome vehicles to overcome large distances. Here, we report on the transmission of the root-colonizing, plant-beneficial and insecticidal bacterium Pseudomonas protegens CHA0 from root to root by the cabbage root fly, Delia radicum. Following ingestion by root-feeding D. radicum larvae, CHA0 persisted inside the insect until the pupal and adult stages. The emerging flies were then able to transmit CHA0 to a new plant host initiating bacterial colonization of the roots. CHA0 did not reduce root damages caused by D. radicum and had only small effects on Delia development suggesting a rather commensal than pathogenic relationship. Interestingly, when the bacterium was fed to two highly susceptible lepidopteran species, most of the insects died, but CHA0 could persist throughout different life stages in surviving individuals. In summary, this study investigated for the first time the interaction of P. protegens CHA0 and related strains with an insect present in their rhizosphere habitat. Our results suggest that plant-colonizing pseudomonads have different strategies for interaction with insects. They either cause lethal infections and use insects as food source or they live inside insect hosts without causing obvious damages and might use insects as vectors for dispersal, which implies a greater ecological versatility of these bacteria than previously thought.


Assuntos
Brassica/microbiologia , Dípteros/microbiologia , Raízes de Plantas/microbiologia , Pseudomonas/fisiologia , Microbiologia do Solo , Animais , Antibiose , Dípteros/crescimento & desenvolvimento , Dípteros/fisiologia , Herbivoria , Larva/microbiologia , Larva/fisiologia , Pseudomonas/química , Pseudomonas/classificação , Pupa/microbiologia , Pupa/fisiologia , Rizosfera , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...